Representations of quivers on abelian categories and monads on projective varieties
نویسندگان
چکیده
We consider representations of quivers in arbitrary categories and twisted representations of quivers in arbitrary tensor categories. We show that if A is an abelian category, then the category of representations of a quiver in A is also abelian, and that the category of twisted linear representations of a quiver is equivalent to the category of linear (untwisted) representations of a different quiver. We conclude by discussing how representations of quivers arise naturally in certain important problems concerning monads ans sheaves on projective varieties.
منابع مشابه
A Universal Investigation of $n$-representations of $n$-quivers
noindent We have two goals in this paper. First, we investigate and construct cofree coalgebras over $n$-representations of quivers, limits and colimits of $n$-representations of quivers, and limits and colimits of coalgebras in the monoidal categories of $n$-representations of quivers. Second, for any given quivers $mathit{Q}_1$,$mathit{Q}_2$,..., $mathit{Q}_n$, we construct a new quiver $math...
متن کاملQuivers in Representation Theory (18.735, Spring
Quivers are directed graphs. The term is the term used in representation theory, which goes along with the following notion: a representation of a quiver is an assignment of vector spaces to vertices and linear maps between the vector spaces to the arrows. Quivers appear in many areas of mathematics: (1) Algebraic geometry (Hilbert schemes, moduli spaces (represent these as varieties of quiver ...
متن کاملGorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملNoetherian Hereditary Abelian Categories Satisfying Serre Duality
Notations and conventions 296 Introduction 296 I. Serre duality and almost split sequences 300 I.1. Preliminaries on Serre duality 300 I.2. Connection between Serre duality and Auslander–Reiten triangles 304 I.3. Serre functors on hereditary abelian categories 307 II. Hereditary noetherian abelian categories with non-zero projective objects 309 II.1. Hereditary abelian categories constructed fr...
متن کاملHomogeneous projective bundles over abelian varieties
We consider those projective bundles (or Brauer-Severi varieties) over an abelian variety that are homogeneous, i.e., invariant under translation. We describe the structure of these bundles in terms of projective representations of commutative group schemes; the irreducible bundles correspond to Heisenberg groups and their standard representations. Our results extend those of Mukai on semi-homo...
متن کامل